AD-A269 923 Z::/s‘:s:-::s
IR ESC-TR-93-185 (@

—-—
e d

= Software Engineening Institute

A Case Study
in Software Maintenance

Susan Dart
Alan M. Christie
Alan W. Brown

July 1993

93-22632
AR

Technical Report

CMU/SEI-S3-TR-08
ESC-TR-93-185
July 1993

A Case Study
in Software Maintenance

Susan Dart
Alan M. Christie
Alan W. Brown

Case Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office

ESC/ENS

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official
DoD position. it is published in the interest of scientific and technical

information exchange.
Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

(e

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1993 by Carnegie Mellon University.

fow B

o

H4

Acoesaton Par i

- ‘ r_i

2% 4 ©]
DT ™

Al

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and patential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information

Center, Atn: FDRA, Cameron Station, Alexandrnia, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161

Copies of this document are also available from Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212, Telephone:

(412) 321-2992 or 1-800-685-6510, Fax: (412) 321-2994.

Use of any trademarks in this report is not infersded in any w-ay to infringe on the rights of the trademark holder.

Table of Contents

1 introduction
2 The Interviews

3 Summary and Analysis of Findings and Recommendations
3.1 Summary of Findings
3.2 Summary of Recommendations
3.3 Successes

4 How to Use Our Findings and Recommendations
4.1 Developing an Improvement Plan
4.2 Outline of an Improvement Plan

5 Summary and Conclusions
5.1 Acknowledgments

Appendix A Detailed Findings and Recommendations
A.1 Reverse Engineering and Re-Engineering Tools
A.2 Testing
A.3 Configuration Management
A.4 Documentation
A.5 CASE Tools
A.6 CASE Tool Integration
A.7 Tooling for Maintenance and for New Software Development
A.8 Sharing Knowledge of Tools
A.9 Training of Technical Personnel
A.10 Maintenance Teams
A.11 Contractor Management
A.12 Corporate Culture
A.13 Corporate Communications
A.14 Quality Assurance and Standards
A.15 Hardware

Appendix B Recommended Reading
B.1 Addressing Quality
B.2 Addressing Risk
B.3 Addressing Technology Transition
B.4 Addressing Process Improvement
B.5 CASE Tools
B.6 Configuration Management Issues
B.7 CASE Tool Integration

O oot

11
11

15
17

19
18
21
23
26
28
30
32
34
35
37
39
40
41
43
45

47
47
47
48
48
49
48
50

CMU/SEL-93-TR-8

CMU/SEL-93-TR-8

Case Study in Software Maintenance

Abstract: In an effort to find out more about the tools, procedures, and
techniques project personnel use in their work, the Computer-Aided Software
Engineering (CASE) Environments Project interviewed personnel in eight
software maintenance projects within an agency of the U.S. government.
These interviews highlighted problems that we believe are typical of many
software maintenance organizations (i.e., the need for more effective software
maintenance tools, lack of communication between individuals working on
similar projects, low status of maintenance personnel, and lack of a design-for-
maintenance philosophy during the software development phase). This repont
highlights the findings of these interviews, provides our analysis of the findings,
and makes recommendations directed at the agency for improvement in the
areas of tools, people, and process. We believe that what we observed is very
typical of the state of the practice in these areas and as such that this report
and its recommendations are applicable to other large or small software
maintenance projects.

1 Introduction

During 1992, the Software Engineering Institute (SEI} performed a study, within a government
agency, which investigated the application of computer-aided software engineering (CASE)
technologies to software development. As part of this study, one task was to examine the de-
velopment processes and the software tools used within maintenance (life-cycle suppornt)
projects. The examination was performed through interviews with appropriate project manag-
ers and technical personnel associated with eight projects within this agency.

This report highlights the results of these interviews. It presents our findings, recommenda-
tions, analysis of findings, suggestions for improvement, and a bibliography for further reading.
The projects selected for study were chosen by agency personnel basec on volunteers re-
sponding to a call for participation. The interviews were conducted over a period of three days.
In most cases we spoke with the project leader and at least one other person from the project;
each interview lasted approximately two hours. People spoke candidly about their work and
were very enthusiastic about being given the opportunity to express both their satisfaction with
and concern for the software engineering practices in their organization. In particular, they
were motivated to participate by the hope that their maintenance practices and support could
be improved.

While our interview sample was small relative to the size of the organization, we experienced
considerable uniformity in opinions, satisfactions, and concerns across the interviews. This
has led us to believe that our findings are representative of many of the software maintenance
groups within the agency. Our interviews ware informal; thus, we were not using any formal
assessment instrument. We consider our series of interviews to be one of many steps for the
agency in its drive to improve its software development and maintenance practices. This report
does not provide a "silver bullet” solution for the agency: the best any such report can do is

CMU/SEI-93-TR-8 1

highlight the beliefs and attitudes of the interviewees via the findings and to express our anal-
ysis and suggestions for improvement based on those findings. Improvement requires a long-
term commitment by the whole organization and will involve more formal assessment and
more internal analysis. The intention of this report is thus to suggest areas that need to be ad-
dressed in order to improve software development and maintenance rather than to provide a
detailed improvement implementation plan.

While this study was done for a specific agency of the US government, we believe our findings
have general applicability to many other government agencies and commercial companies
who deal with large or small maintenance projects. Our expectations prior to the interviews
were that we would focus mainly on tools and technology. However, as will become clear from
reading the report, we discovered that many issues, beyond purely technological ones, hin-
dered organizational effectiveness. We found, for example, that the agency has to confront
such problems as lack of design for maintenance, low status of maintenance personnel, and
ineffective communications. Communications presented a similar problem. For example, we
found that diversity in project culture, compartmentalization of projects, use of different hard-
ware platforms, etc., tended to inhibit communications. These are problems which are perva-
sive in many software organizations. Because maintenance activities are taking an
increasingly large share of software budgets, the insights gained from studies such as this and
carried into programs for managing software maintenance are of ever-increasing significance.

To protect confidentiality, the government agency involved in this study (herein referred to as
“the agency”) is not named. in some cases, use is made of the word “corporate”. Such refer-
ences have agency-wide implications. Also for reasons of confidentiality, neither the agency’s
specific high-level organizational groups nor the projects within these groups can be identitied.
The agency has a large staff which is supported by many software-intensive projects. it has
customers all over the world, and has a substantial number of subcontractors. The software
systems which support agency personnel are expected to be robust over long lifetimes. Two
groups which were involved in the study had primary responsibility for software maintenance
and software development. Thus the names “maintenance” and “development” will be used to
refer to these groups or projects within these groups. One specific project which maintained a
large corporate configuration management (CM) system is referred to quite extensively in the
report, and is simply called “the corporate CM system.”

We have organized the report as follows. Section 2 provides background information on how
the interviews were conducted and describes the structure of the findings. Section 3 provides
a summary and analysis that highlights the major findings and recormmendations. Section 4
presents a suggested improvement pian based on our recommendations. Section 5 provides
our conclusions. Appendix A contains the crux of the data we obtained in terms of our findings,
recommendations for improvement, and discussions of those. Appendix B is a bibliography
presenting additional information which is relevant to our recommendations.

2 CMU/SEI-93-TR-8

2 The Interviews

Prior to the interviews, a group of participating candidates was identified; each participant was
given a written set of topics in preparation for the interviews. The interviews were informal and
covered a wide-ranging set of issues such as tools and tool use, inter-project communications,
contractor and customer management, and quality assurance. The project personnel we irter-
viewed were very candid and provided us with much valuable information. This information
forms the basis of this report.

The interview results were initially structured into fitteen categories, with each category being
related to a specific topic such as “Reverse Engineering and Re-Engineering Tools™ or “Cor-
porate Communications.” Each of these categories contains both a set of findings and a set of
recommendations related to the findings, along with a discussion of each. Details of these cat-
egories can be found in Appendix A. Over 60 findings and 70 recommendations are included.

From these, based or. our analysis, three major findings/recommendations themes are de-
rived: tools, people, and process. The tools theme deals with issues such as tools needs of
maintenance projects, heterogeneous platforms, and organizational focus for tools support.
The people theme deals with issues such as inter-project communication, the prestige of main-
tenance projects, and training of technical personnel. Finally, the process theme deals with is-
sues such as contractor and customer interactions, schedule pressures, and quality
assurance. This analysis resulted in a total of 22 major findings and 25 recommendations
which are listed in Section 3. A synthesis of these findings and recommendations is given in
the paragraphs below. Appendix B of this report provides a bibliography with specific referenc-
es tnat expand on our recommendations.

Most of the information we gleaned from the interviews was generally focused on programmer
activities such as coding and testing rather than on managerial activities such as budgeting
and resource allocation. The interviewees did not raise issues about such activities as project
management. Thus, our recommendations focus on tools, people, and process issues as they
affect the work of project engineers.

The tooi-related issues centered around:

¢ Availability, quality, and integration of CASE tools

¢ Importance of adequate documentation

* Improvement in configuration management support
» Lack of reverse engineering and re-engineering tools

* Difference in tooling needs for projects performing lifecycle maintenance
support versus new software development

* The need for testing tools and better testing procedures

CMU/SEI-93-TR-8 3

The people-related issues focused on:

¢ Adequacy and availability of training

¢ Effectiveness of communication within the agency and with customers
¢ Improvement in communication on the use and availability of tools

¢ Difficulties with contractor management

¢ Poor perception of maintenance activities within the agency

The process issues centered around:

¢ Lack of quality assurance
¢ Necessity to improve the software engineering standards

¢ Need to address improvement in the software engineering techniques and
tools

Based on these findings we make specific recommendations involving tools, people, and pro-
cess that we feel can be addressed by the agency. We highlight the common themes running
through all the findings and emphasize the many benefits that can be accrued by addressing
the recommendations through improvements in practices at the agency. We suggest develop-
ing an improvement plan and give an outline for such a plan based on our recommendations.
Also, we provide a bibliography relevant to various issues that need to be addressed in an im-
provement plan.

4 CMU/SE!-93-TR-8

3 Summary and Analysis of Findings and
Recommendations

All the details of our findings, recommendations, and discussions are provided in Appendix A.
They are presented as 15 categories:

* Reverse engineering and re-engineering tools

¢ Testing

¢ Configuration management issues

* Documentation

® CASE tools

¢ Integration

* Tooling for maintenance and new software development

¢ Sharing knowledge of tools

¢ Training of technical personnel

¢ Maintenance teams

e Contractor management

® Corporate culture

¢ Corporate communications

¢ Quality assurance and standards

* Hardware

All in all, there are over 60 findings and 70 recommendations. In this section, we have ana-
lyzed those findings and recommendations and found three pervasive themes. Those themes
are: tools, people, and software process. Below is the distillation of all the findings and recom-
mendations into 22 major findings and 25 major recommendations based on the three themes.

3.1 Summary of Findings

Our analysis suggests that there are common themes throughout the findings and recommen-
dations. These themes involve tools, people, and process. The tools theme looks at technol-
ogy issues related to the development of software; the people theme deals with personnel
issues such as training and communication; and the process theme deals with issues such as
contractor management, schedule pressures, passing on expertise, and coding philosophies.
These themes are elaborated below and represent our major findings and recommendations.
For each major finding, we provide a reference to the detailed discussions in Appendix A.

CMU/SEI-93-TR-8 5

3.1.1 Tools-Related Findings

The major findings concerning tools and technology relate to the availability of tools to project
members and the quality and maturity of CASE tools in general to assist developers and main-
tainers. Project members have a clear idea as to what capabilities they want from their tools
but are generally disappointed by the state-of-the-art in tools. Maintainers need different tools
than developers because of the legacy code they have to deal with.

The tools findings can be summarized as:

1. Most project personnel believe that they do not have adequate tools for tech-
nical support. {(See Sections A.1-7.)

2. Many project personnel want additional automated support for their configu-
ration management (CM) systems. The in-house CM system developed by
the agency is in use in a number of projects, but the users believe itis only a
partial solution for their needs. (See Section A.3.)

3. Projects have heterogeneous platforms which makes it difficult for the agency
to identify a standard set of tools across projects. (See Section A.15.)

4. The maintenance activities which were most often cited by the projects as in
need of CASE tool support include CM, reverse engineering, re-engineering,
testing, and document production. (See Sections A.1-7.)

5. Most project personnel interviewed believe that they have not been exposed
to state-of-the-art tools. (See SectionsA.7-9.)

6. Mostnew tools that have been examined by each of the projects are generally
not mature enough for use by the agency. For example, we were told that
many CASE tools tested are currently not sufficiently robust for maintenance
of the large application systems typical of the agency. (See Sections A.1-2
and A.5-6.)

7. Al project personnel believe that tooling needs for maintenance projects dif-
fer from those for new software development, and that, while tools exist for
development support, tools for many maintenance activities do not currently
exist within the agency. (See Section A.7.)

8. All project personnel were appreciative of the work of the in-house group re-
sponsible for evaluation, acquisition, and adoption of new CASE tools. Many
project personnel told us that the work of the group should be expanded. (See
Sections A.5. and A13.)

3.1.2 People-Related Findings

The major findings concerning people relate to the prestige level of maintenance work, the
amount of training in methods and use of tools that people receive, and the amount of com-
munication that occurs between personnel. The people findings can be summarized as:

Due to the importance of CM activities in the software maintenance process,
many project personnel want to dedicate the work of cne person to the role of
CM support. (See Section A.3.)

Most people we talked to believe that within the agency maintenance is not
viewed as a prestigious job. In particular, non-maintenance personnet view

the CM support function as having little status. (See Sections A.3, A.10, and
A12)

A number of people held the view that little rapport exists within the agency
between groups dedicated to software development and tnose who perform
maintenance activities. (See Sections A.8-10 and A.12-13.)

When asked whether training was adequate, a number of people told us that
the right people often do not get the right technicat training at the right time.
{See Section A.9.))

A common complaint from project members is that they are not given ade-
quate resources (i.e., time, personnel) for performing maintenance activities
in @ manner consistent with the agency’s software quality assurance (SQA)
standards. (See Section A.14.)

Some project personnel believe that communication within the agency is
sometimes less than effective. (See Sections A.8 and A.11-13.) Specifically
this involves communications between:

« projects and upper management regarding technical needs,

« different projects regarding the use of software tools, and

» some projects and their customers regarding requirements.

3.1.3 Process-Related Findings

The major findings concerning process relate to the enforcement of standard practices, use of
outside contractors, improvement of the working environment via new technology, and the

passing on of lessons learned.

The process findings can be summarized as:

1.

CMU/SEI-93-TR-8

The majority of projects do not have documented quality assurance practices
in place. In particular, systematic testing plans and test coverage analysis
were carried out in only one of the projects we interviewed. (See Sections
A.12-13.)

A number of people expressed the opinion that code is often not designed for
change. Thus, while the code meets its operational specification, for mainte-
nunce purposes it is poorly designed and documented. (See Sections A.4,
A.8,and A.10.)

A number of project personnel believe that in recent months there has been
little improvement in their working environment (for example, in new software
tools supporting maintenance activities). (See Sections A.10 and A.12-13,)

4. No one we interviewed knew of any agency-wide plans for introducing new
technology across maintenance projects. (See Section A.11 and A.13.)

5. The use of outside contractors in some projects is seen as a cause for prob-
lems due to the lack of day-to-day control and increased communication over-
head. {See Section A.14.)

6. On a number of occasions we were {old that documentation creation and
maintenance is one of the activities that causes a major problem. (See Sec-
tions A.4, A7, and A.13.)

7. Many maintenance personnel we interviewed believe that the quality of the
support documents accompanying the software that is passed to them is *-
ten very low. The reason most often cited for this was that schedule pressures
placed on developers result in insufficient attention to the support documents.
(See Sections A.12-13.)

8. A common belief amongst those interviewed is that lessons learned and ex-
pertise from previous and existing projects are not being disseminated
throughout the agency. (See Sections A4, A.7, A.10, and A.13.)

3.2 Summary of Recommendations

As with the findings, our recommendations also cover the themes of tools, people, and pro-
cess. These are given in the following three subsections.

3.2.1 Tools-Related Recommendations
The toois-related recommendations can be summarized as:

1. Investin more effective tools, particularly to support reverse engineering, re-
engineering, testing, configuration management, and documentation.

2. Encourage vendors to build or adapt tools specifically to support the agency
needs.

3. Improve the quality of in-house tools, such as the corporate CM system.
4. Experiment with new tools to determine their applicability to specific projects.

5. Enhance the activities of a centralized tool procurement group. Such a group
might also coordinate technical communication between projects.

6. Find tool solutions that address the heterogeneous platforms needs of the
agency.

7. Encourage technical personnel to more aggressively communicate their tool-
ing needs to upper management.

3.2.2 People-Related Recommendations

The people-related recommendations can be summarized as:

8 CMU/SEI-93-TR-8

1. Disseminate knowledge of the state-of-the-art in tools and expertise.

2. Assign people with particular roles (e.g., CM, testing) to projects and provide
corporate support for those roles.

3. Encourage more experienced people to become maintainers.
4. Improve the prestige level of maintenance jobs.

5. Improve inter-group communications by setting up user groups, electronic
bulletin boards, or vendor presentations, and encourage both the writing of in-
house experience reports and inter-project rneetings. Identify someone to or-
ganize and foster these communications.

6. Make training more eftective, especially in tools use, standards, and docu-
mentation.

7. Establich a technical advisory board to support upper management.

3.2.3 Process-Related Recommendations
The process- related recommendations are:

1. Re-examine corporate policies in light of the increasing functionality of CASE
tools.

2. Emphasize the importance of assuring that all code is as completely and ac-
curately documented as possible.

3. Discern the difterence in needs for maintenance projects versus new soft-
ware development projects.

4. Support design-for-maintenance and re-engineer-for-maintenance philoso-
phies.

Plan appropriate time in project schedules for documenting and testing.
Promote previous successes through, for example, lessons-learned reports.

Institute and enforce quality assurance practices.

@ N o o

Ensure that code transferred to maintenance is completely documented and
meets quality assurance standards.

9. [nvestigate why communications within the agency are occasionally ineffec-
tive.

10. Improve customer interactions with developers and maintainers.
11. Improve contractor selection and monitoring processes in their strategic plan-
ning and decision making.

3.3 Successes

While many problems were identitied by the projects, there were also positive elements which
are worthy of mention. They are:

CMU/SEI-93-TR-8 9

* The agency is staffed by dedicated professionals motivated by the national
importance of the work they are doing.

* The skill and motiv=""~n of many the agency employees makes a critical
contribution to the cessful implementation, support, and use of
operational systems.

* The function of the software support staff within the maintenance group is
seen as crucial and valuable in technology exposure and adoption.

* The maintenance work is viewed as being challenging and exciting.

All in ali, there is significant scope for improvement. The project personnel we interviewed
were very keen on expressing their concerns, because in responding to our questions they
saw an opportunity to initiate improvement in their working environment

10 CMU/SEI-93-TR-8

4 How to Use Our Findings and Recommendations

In the previous chapter we presented an analysis of our findings and made recommendations
based on those. In this section we suggest how to use our results to form an improvement
plan.

4.1 Developing an Improvement Plan

improvement takes time, ptanning, and resources. Based on the findings and recommenda-
tions, we therefore recommend developing an improvement plan. This suggested plan is
structured into project, group, and corporate elements. The project-level issues deal primarily
with the need for improved software tools. These tools are critical when addressing the imme-
diate problem of maintaining existing poor-quality code. The group-level issues address the
need for improved communications and enhanced status for maintenance personnel. Corpo-
rate-level issues focus on creating an environment in which a design-for-maintenance philos-
ophy is seen as an integral part of the software development culture. Also at the corporate
level, such issues as agency-wide quality assurance standards and contractor management
are important.

All of the above issues have a relationship to Total Quality Management (TQM). The agency
is currently actively involved in an extensive TQM pragram, and the issues addressed in this
document are pertinent to that program.

To implement a successful improvement effort, several essential elements must be in place.
First, visible support for the improvement plan must be publicly shown by upper management
in the agency. If this does not occur, then the efforts will likely lose their momentum. Second,
an action plan which identifies resources, required actions, and responsibilities must be avail-
able. Such a plan also needs grass roots input or it will not receive the agency-wide buy-in
necessary for its success. Third, any improvement plan should allow for some initial short-term
and easily attainable successes. If the initial goals are too ambitious, then enthusiasm may
disappear under the weight of pending tasks. Finally, the plan should specify mechanisms that
allow management to track the progress of the plan, in order that mid-course corrections can
be made if necessary. The above elements may already be in place as a result of the TQM
efforts, but they are emphasized here to highlight their importance.

4.2 Outline of an Improvement Plan

Developing an agreed-to, and implementable action plan for improvement requires a signifi-
cant effort. We offer an outline that suggests a strategy for improvement. This outline repre-
sents the beginnings ot a plan based on the recommendations and themes we identified
earlier and is intended to meet the specific needs of the agency. The outline is given below:

CMU/SEI-93-TR-8 11

1. Introduction
2. Process of Improvement
a. improveinents in a TQM context
b. Project Needs
¢. Maintenance-Group Needs
d. Agency Needs
3. Plan at the Project Level
a. Tool Evaluation, Selection, and Installation
a. Tool Training and Use

b. Functional Needs for Tools:
- Reverse Engineering and Re-Engineering Tools
- Testing Tools
- Documentation Tools
- Contiguration Management Tools

4. Plan at the Maintenance-Group Level
a. Disseminating Knowledge
b. Instituting a Technical Advisory Board
¢. Making Maintenance an Exciting Challenge
5. Plan at the Corporate Level
a. Designing for Maintenance and Re-Engineering for Maintenance

b. Improving Corporate and Customer Communications

O

. Improving Commitment to Plans and Schedules

Q

. Instituting Quality Assurance Practices and Standards <
e. Managing Contractors

6. Executing and Monitoring the Plan

7. Conclusion

Section 2 of the proposed action plan identifies the major deficiencies, reviews the overall
strategy to correct them, and identifies how the improvement efforts recommended in this re-
port fit within the context of the on-going TQM initiative. Sections 3 through 5 then provide de-
tails of the plan, identifying problems, describing solutions, specifying tasks and milestones,
and reviewing risk. Section 6 discusses how to implement the plan and how to monitor its ef-
fectiveness.

Developing this plan is not a short-term effort since personnel at all levels of the agency must
provide input and be brought to agreement. In the plan's implementation, costs are clearly an

12 CMU/SEI-93-TR-8

overriding consideration. In the long run, we firmly believe that the quality improvement actions
we have described will reduce costs, but an up-front financial investment is clearly required.
Thus, some form of cost-benefit analysis seems appropriate in order to establish priorities.
Also, establishing a task force that is responsible for developing, implementing, and monitor-
ing the improvement plan will help keep the project on track.

CMU/SEI-93-TR-8 13

14

CMU/SEL-93-TR-8

5 Summary and Conclusions

From our interviews, many problems were identified and suggestions for improvement were
made by the interviewees. It is clear that the technical staff at the agency are diligent and con-
scientious and that they are motivated to see improvements in their working environment. We
have presented our findings and recommendations in detail in Appendix A based on the infor-
mation we received from the interviews. The findings and recommendations can be classified
into three areas: tools, people, and process. A summary of findings and recommendations
based on these themes was given in Section 3. Below, we review some of the more important
findings and recommendations.

One major finding is that the maintenance group frequently has to support software which is
not developed with maintainability in mind. Schedule pressures often result in software being
transferred to the maintenance phase before all deliverables are completed. Consequently,
the maintenance group devotes significant time to issues refated to supporting software which
is poorly designed, coded, tested and documented; that is, code which was not designed for
maintenance. Thus we heard a consistent message that tools for such activities as reverse
engineering and testing were a high priority and that several groups were not aware of the
state-of-the-art in tools. We also heard that the software to be maintained does not have ef-
fective documentation to support it, either in written reports or embedded in the code. We do
not believe that it is the intent of the original developers to produce incomplete work. Rather,
the pressures to meet unrealistic schedules force both in-house developers and contractors
to release their software before it is ready. We also saw evidence that schedule pressures
within maintenance projects result in the same problem with maintained code. Thus the prob-
lem is being perpetuated in the maintenance phase. To overcome these problems, we recom-
mend a two-phase approach. In the short term, there is a strong need for better tools to support
reverse engineering, testing, configuration management, and documentation. These tools will
help deal with the problems of existing code. in the longer term though, there is a need to im-
prove the quality of the developed software. This involves such issues as developing sched-
ules that provide more time to develop a quality product, writing effective software
documentation, adhering to quality assurance standards, providing effective training on tech-
nical and non-technical issues, and coordinating communication between develooment and
maintenance groups.

We found that communication was less effective than it could have been between different or-
ganizational entities. First, little communication appears to occur between different project per-
sonnel regarding software engineering issues. Because many of the problems confronted are
common across projects, the sharing of experiences, mistakes made, lessons learned, etc.,
can be invaluable. Therefore communications ought to be encouraged through such means
as informal reports, seminars, a software engineering bulletin board, etc. Second, we found
that communication on technical issues from the project level to higher management could be
improved. Some project personnel we interviewed felt that upper management was not aware
of the depth of some of the technical problems they were facing. We have therefore recom-

CMU/SEI-93-TR-8 15

mended that a technical advisory group be formed to keep upper management aware of the
technical issues that could affect their decision making. Third, we felt that communication be-
tween projects and contractors requires reassessment. We heard that some (but not all) con-
tractors working for the agency performed at unacceptably low levels. This could partly be due
to inadequate contractor evaluation prior to contractor selection. However, it could also be due
to insufficient contractor oversight during the term of the project. Clearly contractor problems
can result in significant cost impact, and the use of a TQM approach to resolving this issue
(e.g., working more closely with the contractor, or forming joint teams with the contractor)
could be worthwhile. Finally, we heard that the effectiveness of communications with custom-
ers varies significantly. The agency policy needs to encourage customers to be involved more
closely with the project throughout its life-cycle rather that just at the time of field installation.

We heard that the status and prestige of maintenance projects is less than that of development
projects. Maintenance project positions are perceived as less challenging and attract person-
nel who have less experience. When these personnel gain experience, they move on, so that
personnel stability in maintenance projects is less than it should be. However, the mainte-
nance personnel we talked to did find their work rewarding and challenging and even preferred
it to development work. Some were frustrated, though, in that they believe development
groups are more likely to receive better support. To overcome these problems we feel that ev-
ery opportunity should be taken to improve the status of maintenance project personnel. As
stated above, they should have a measure of control over when they have to accept code into
maintenance. They also need better access to the tools to do their job effectively. Finally, they
should be given public recognition (inside the agency) when an effective job has been done.

The maintenance group has developed two software quality assurance documents which con-
tain much useful information to support effective software engineering practices. If the stan-
dards in these documents were followed, then the number and severity of the product-quality
problems associated with existing software development could be lessened. Unfortunately,
because there has been no requirement to enforce these document standards, they often are
not applied at all. We therefore recommend the following:

1. Training on quality standards should be mandatory rather than voluntary.

2. The quality standards are enforced through quality audits using an indepen-
dent software quality assurance (SQA) audit function.

We also feel that the standards are deficient in several areas: they do not explicitly address
issues associated with maintenance and regression testing; they do notillustrate how the stan-
dards could be tailored to the needs of projects; and, there are no examples given of how to
use the standards. These aspects need to be addressed by the agency's SQA documents to
be flexible enough to meet all project needs.

To address the issues in an orderly fashion in the context of improvement, three focus areas
are suggested: project, maintenance-group, and corporate. The project focus is primarily on
tools support, particularly for reverse engineering, re-engineering, CM, testing and documen-
tation. These areas concern the immediate needs of the agency maintenance projects, needs

16 CMU/SEI-93-TR-8

that are not being met. The maintenance-group focus is primarily on improving both effective
communications within this group and improving the prestige of maintenance personnel. Fi-
nally, at the corporate tevel, the need is for implementing the design-for-maintenance philos-
ophy throughout those groups which are involved in the software life-cycle.

In closing, we feel that the following benefits will result from the implementation of our recom-
mendations:

* Improved working environment and improved morale among personnel.
* Improved quality of products through designed for maintenance.

¢ Improved quality products through enforcement of SQA standards.

* More effective relations with contractors and customers.

s Jmproved inter-project and technical/management communication.

® Long-term reduction in costs due to effective maintenance of quality
software.

We feel that the problems we have brought to light in this report are indicative of the current
state-of-the-art and state-of-the-practice in software engineering. Many organizations are in-
stituting improvement plans based on recommeandations similar to the ones found in this re-
port, and significant improvements in quality and productivity are being seen. We feel sure that
the agency can produce similar results by adopting the recommendations suggested in this
report.

5.1 Acknowledgments

We would like to express our gratitude to agency staff for arranging the meetings and enabling
us to carry out the studies. We also thank the project leaders and software engineers at the
agency who took time to speak with us. Finally we would like to thank the following reviewers
for their feedback: Mark Borger, Mike Caldwell, Peter Feiler, Gibbie Hart, Ed Morris, and Den-
nis Smith, not to mention the SE! technical writers, Dan Bidwa and Julia Deems.

CMU/SEI-93-TR-8 17

18

CMU/SEI-93-TR-8

Appendix A Detailed Findings and
Recommendations

This appendix describes our findings and highlights a number of recommendations based on
the interviews we conducted. interviewees were encouraged to discuss in an open format the
issues they were facing and their perspectives on their work. As a result their responses fo-
cussed on their current problems.

Findings have been grouped into categories representing the major areas affecting the soft-
ware development and maintenance work being carried out at the agency. For each group of
findings a set of recommendations is made. Similar findings and recommendations appear
across some categories, highlighting dependencies between issues and illustrating a conss-
tent pattern in the tools, people, and process needs of the agency. In general, the findings rep-
resent what we heard from the interviewees, while the recommendations are primarily ours.
Sometimes, however, the distinction between a finding and a recommendation is minimal. For
example, interviewees reported that no official testing plan or process existed; our recommen-
dation is to define test plans and a testing process. Also, there were occasions when the in-
terviewees did not explicitly mention a concern but it was easy to deduce a finding. For
example, no one mentioned regression testing but discussion about other problems highlight-
ed that the lack of regression testing was causing those problems. Thus, our finding is that no
official regression testing is being carried out; our recommendation is to inciude regression
testing as part of official development and maintenance practices.

This section is structured such that each category starts with a brief explanation of the focus
of that category. Following the explanation is a list of findings accompanied by a discussion of
the list. A recommendations section follows. The recommendation section begins with a de-
scription of our philosophy for addressing that category and is then foliowed by the actual rec-
ommendations. Finally comments on those recommendations are made.

A.1 Reverse Engineering and Re-Engineering Tools

Reverse engineering and re-engineering tools can help identify the structure and architecture
of code artifacts and provide information about the codes (such as the definition and use of
variables). This kind of information assists personnel in making changes to the code, restruc-
turing it for enhancement, and making it more amenable to future change.

A.1.1 Findings

1. All life-cycle support project personnel expressed a need for reverse engi-
neering and re-engineering tools to help analyze code under maintenance.

2. Mostproject personnel see tools such as CodeCenter and SMARTSystem as
useful ones aithough a few projects found these to be immature (i.e., unstable
and requiring large amounts of resources).

CMU/SEI-93-TR-8 19

A.1.2 Discussion of Findings

Personnel in all projects felt that any kind of reverse engineering or re-engineering tool is an
improvement over no tool. Currently projects that receive code for life-cycle maintenance gen-
erally do not receive adequate documentation. Thus, the team must rely on reverse engineer-
ing techniques in order to understand the code and to generate the required documentation.
Subsequently, the team must change the code; this requires re-engineering. Teams usually
have no tools to aid in reverse engineering and re-engineering. A few tools such as Code-
Center and PROCASE SMARTSystem have been evaluated. While prone to performance
problems when handling large amounts of data, these tools appeared to be usetul for sorne
reverse and re-engineering tasks. Most people who had used them believed that, as these
tools mature, they will be increasingly beneficial to their work.

Reverse and re-engineering tools were viewed as the primary requirement in tooling for main-
tenance projects.

A.1.3 Recommendations

Due to a lack of up-to-date and accurate documentation, reverse engineering tools are a vital
aid in extracting information about the code in order to perform maintenance. Similarly, chang-
es to code require change impact analysis, which some re-engineering and CM tools can pro-
vide. It should be possible to significantly reduce the need for reverse engineering tools by
properly documenting all relevant information generated during the development phase. How-
ever, given that maintenance projects currently have to deal with a legacy of poor documen-
tation, high priority should be given to providing reverse engineering tools.

Thus, our specific recommendations are:

1. Require that as much knowledge as possible about the application system is
handed on from the development group to the maintenance group.

2. Investigate ways of encouraging maintainers to be involved in some parts of
development activities in order for knowledge to be transferred more easily.

3. Ensure sufficient attention is paid to documentation. Do not underestimate
the importance of accurate and thorough documentation.

4. As reverse engineering and re-engineering tools mature, consider investing
more heavily in these tools as they are likely to be a significant asset to main-
tenance projects.

5. Encourage industry to build better, more suitable tools for specific platforms
to aid reverse engineering and assist in re-engineering. Interactions with ven-
dors and attendance at CASE workshops and conferences can help here.

6. Provide more support (in terms of tools, personnel, and systematic practices)
for maintenance projects.in

7. Keep track of the state-of-the-art in tools such as CodeCenter and SMART-
System, and of up-and-coming software maintenance companies.

20 CMU/SEI-93-TR-8

8. Experiment with state-of-the-ari tools to evaluate their applicability to agency
projects. Lessons learned from these experiments should be collected and
disseminated.

A.1.4 Discussion of Recommendations

One way to reduce the need for reverse and re-engineering tools is to provide the maximum
amount of information and documentation about the code at the time it is passed onto the
maintenance group. The ideal situation is to pass on the complete development environment
to the maintenance team so that they have access to as much of the history and data about
the product as possible.

When it is not possible to deliver the development environment with the operational system,
all design documents should be delivered. This includes the architecture document for the
product, reverse and re-engineering tools should also be provided so that the maintenance
team can thoroughly analyze the code. Third-party tools to assist in this effort are starting to
appear and will soon be mature. The agency needs to continue to invest in this area and ex-
periment with various tools to see which tools are applicable to which kind of project.

Maintenance is a complex task, in large part because the documentation and other information
maintenance workers receive are frequently inadequate and occasionally inaccurate. Be-
cause of this, it is a great advantage to have experienced people carrying out the tasks. Ways
to encourage experienced people into the maintenance field should be investigated. In partic-
ular, it is important to train and retain people who have the enthusiasm, skills and characteris-
tics (e.g., thoroughness, calm under pressure, inquisitive, etc.) to perform maintenance
activities.

There are no tools that support defining the architecture of software applications. Having an
architectural description of a software application would greatly assist reverse and re-engi-
neering activities (along with enabling reuse of software applications). Software architectures
is still a research topic, and one that the agency should definitely track.

A.2 Testing

This category concerns tools and methods for testing code.

A.2.1 Findings

1. Project personnel in most projects felt their testing procedures and testing
tools were inadequate.

2. Project personnel in all projects wanted better testing tools.

3. Project personnel in many projects were not aware of the state-of-the-art in
testing tools.

4. Project personnel in some projects indicated that they did not have a testing
plan or strategy or regression test suite.

CMU/SEI-93-TR-8 21

5. Project personnel in most projects do not have any quality control service or
quality assurance person to examine the results of testing or to ensure that
testing standards are being maintained.

A.2.2 Discussion of Findings

Among the project personnel we interviewed there appeared to be no common approach to
the systematic testing of code. There are very few tools to aid in testing. No software quality
assurance seems to be enforced to ensure that good practices are tollowed and that quality is
built into applications. Many project personnel do not seem to be aware of state-of-the-art in
testing tools, or, if they are, they do not have time to experiment with these tools.

A.2.3 Recommendations

Testing is critical to the quality of application code delivered and should figure prominently in
any development or maintenance plan. In particular, a satisfactory testing plan should de-
scribe what is to be tested, how it is to be tested, and when it will be deemed to have satisfied
the tests. Testing should be monitored and regrassion testing should be carried out after
changes are made. Testing needs to be accounted for in schedules and supported with toc!s
and practices.

Thus, our specific recommendations are:

1. Examine state-of-the-art in testing tools (e.g., TCAT, EXDIFF, T-Scope).
Dedicate sufficient time to examining these tools.

2. Take a more aggressive approach to encouraging vendors to build more and
better testing tools to suit agency needs.

3. Share with other projects (via testing user groups, electronic bulletin boards,
distributing test plans, writing reports, etc.) information about how testing was
performed.

4. Enforce the creation of better test plans, thorough testing, and SQA practices.
5. Incorporate a section on regression testing into the agency’'s SQA manuals.

6. Institute systematic testing (particularly regression testing) across all mainte-
nance groups.

7. Setup independent testing groups to ensure that persons other than the pro-
grammer are also involved in testing.

A.2.4 Discussion of Recommendations

The agency needs to know about state-of-the-art in testing tools and to experiment with tools
to determine which ones are appropriate to which kinds of projects. Also, SQA needs to be
adopted to ensure proper testing processes are followed. A concerted effort is needed to com-
municate the agency’s needs for testing to vendors in order to encourage vendors to build
more suitable tools. Any testing expertise within the agency should be disseminated through-
out the agency through seminars or in-house papers.

22 CMU/SEI-93-TR-8

A.3 Configuration Management

Configuration management (CM) means different things to different people and groups. Most
of the groups at the agency see CM as version control, configuration identification, status ac-
counting, configuration control boards, and modification request tracking.

A.3.1 Findings

1. All projects are using some kind of CM. Project personnel see it as high pri-
ority and indispensable.

2. Project personnel in all projects want increased and better CM support in the
sense of more automated functionality.

Projects have CM needs for heterogeneous platforms.

4. Many project personnel are not aware of the state-of-the-art in CM tools for
their platforms.

5. Projectpersonnel who use the corporate CM system indicated that it met their
change management needs fairly well.

6. Some project personnel said they have local, specific CM needs that they feel
a platform-specific CM tool should be abie to meet, such as tracking derived
objects.

7. Some users said they were disappointed with the reliability of the corporate
CM system because of a major outage that had occurred.

8. All project personnel felt a CM person was indispensable.

9. The CM position is viewed as low-status with varied and ill-defined duties
across the projects.

10. It was indicated that the corporate CM system is not a complete CM solution
because it only partially meets the project CM needs. That is, there were
additional needs not met by the corporate CM system.

11. Personnel in some projects do not use the corporate CM system because:
sthey did not know about it, or
*it did not seem to address their specific requirements.

12. Project personnel felt that the corporate CM system is most suitable for
version control of source objects, tracking changes and problem reporting.

13. Project personnel generally only support one release (rather than variants of
releases).

A.3.2 Discussion of Findings

CM is seen as a crucial element in support of software development and maintenance. Each
project uses some form of automated CM support, but most feel that more CM support is need-
ed. For instance, while the corporate CM system was generally found suitable for version con-
trot of releases and tracking of modification requests, it lacks adequate support for code other

CMU/SE!-93-TR-8 23

than source (e.g., binary and derived). For CM support that is not automated, projects are re-
quired to develop or enforce their own CM practices. interviewees reported that on one occa-
sion the corporate CM system proved to be unreliable (in this case, a 3 month down time and
serious code losses were the result). Consequently, some users distrust the corporate CM
system.

Project personnel see the CM support person as a vital part of their team. However, provisions
are rarely made for a specific CM person, so projects must acquire services from outside the
agency. Some projects find that they need assistance in defining the duties of their CM person
in their project. (For instance, should the CM person be allowed to do builds?)

In order to simplify maintenance, generally only one release of a product is supported. While
this appears to simplify development and maintenance, it can often compound the problems
of system users.

A.3.3 Recommendations

Configuration management is an area that touches many aspects of a corporation including
organizational level, project level, and individual programmers. It touches the corporation in
the sense that change management of releases is visible at the corporate level. CM touches
the project level in the sense that projects must put in place controls for managing a team of
programmers as they make changes to code. CM touches the programmer via automated fa-
cilities such as version control, system modeling, and generation of derived objects. CM is a
vital concern to the corporation and an invaluable mechanism for controlling the evolution of
software.

Thus, our specific recommendations are:

1. Determine the corporate level, project level and programmer needs for CM
and resolve which of these needs can best be met by the corporate CM sys-
tem, by enhancements to the corporate CM system, and by third-party CM
tools.

2. Disseminate knowledge of the state-of-the-art in CM tools in order that (a) en-
hancements, if necessary, can be recommended for the corporate CM sys-
tem, and (b) projects can find solutions to their project specific CM needs.

3. Seek out CM automation solutions for the project-level needs on heteroge-
neous, distributed platforms.

4. Improve the image of the corporate CM system by making it more robust, re-
liable and faster.

5. Set reasonable expectations for users of the corporate CM system in terms
of the kind of reliable functionality that one can expect. For example, what
does the corporate CM system do and not do? (No single CM system can be
a “"silver bullet” for all CM needs.)

24 CMU/SEI-93-TR-8

6. Re-examine the role of the corporate CM system in retation to the projects. Is
its main purpose to function as an archival repository for releases and a
change-tracking system for changes to releases? Is it possible to meet ail the
CM needs of the projects on a daily basis?

7. Re-examine the policy on single releases of applications. With more sophis-
ticated CM support, it should be possible for programmers to develop and
maintain families (variants) of product releases for customers rather than just
one release.

8. Provide assistance to projects in defining more clearly the role of a CM person
across the agency projects.

A.3.4 Discussion of Recommendations

In any organization, CM needs must be resolved at different levels: corporate, project, and pro-
grammer. The corporate level involves managing releases of source, tracking modification re-
quests, and managing the resuitant corporate repository. Also, many CM problems in an
organization are not related to the automated CM tool but include other issues such as better
training for CM library personne! and better host computers for accessing the CM tool.

Aithough some users believe the reliability of the corporate CM system ought to be improved,
it seems to provide adequate support for the corporaie level CM needs. At the project leve!,
team members interact to create new versions of CM objects. Often a CM person is assigned
to be the interface between the project and the corporate CM functions. The corporate CM sys-
tem neither completely addressed the projects’ CM needs nor meets the day-to-day team
needs (such as communication or creation of intermediate versions of configurations).
Projects need their own specific CM to support their variants, various sizes of teams and the
heterc3eneous piatforms. A CM system specific to the platform or suitable for heterogeneous
platforms would help. Then the duties of the CM person would need to include the migration
of CM objects of importance from the local CM systems into the corporate system.

The developer level of CM involves those CM capabilities that are available to the individual
programmer. At the very least, version control is needed. The programmer should also have
a workspace in which all necessary changes, compilations, and testing can be done. Actual
changes also need to be tracked; this can be difficult when the programmer is working on a
machine that is not connected to the corporate CM system.

Project personnel seem unaware that CM systems can provide many more capabilities than
just version control of source code. CM systems ~an provide versions of configurations, trans-
actions, change request tracking, system modelling, derived object pools, and other support.
However, the policies and procedures that projects use for their local CM will have to be coor-
dinated with the corporate CM control (e.g., passing the releases into the corporate CM sys-
tem repository along with details of the local change requests).

A policy is needed to achieve some consistency across projects regarding what should be put
under CM control. For instance, documentation, source code, and tools should all be under
CM control.

CMU/SEI-93-TR-8 25

It would be worthwhile to reevaluate the responsibilities of developers, CM personnel, and the
corporate CM system. Suppose, for instance, that the developers had their own CM system
as part of their daily software development environment. Would the duties of the CM person
change once the programmers could do their own builds under CM control (i.e., the whole gen-
eration process was recorded and tracked by the CM system)? If projects had their own CM
systems, how much information would they need to pass on to the corporate CM system?

Currently, CM support is mostly carried out on source code, but for derived objects is also
needed. While the corporate CM system provides a depository for such objects (binary code
on magnetic tape, documentation, or floppy discs) it does not seem to correlate the source with
the derived objects. A better tracking of that relationship is needed.

Because of the complexity of handling variants of releases, projects choose to support only
one release of an application rather than variants customized to suit different customers. While
this simplifies the software maintenance (and the CM activities), it may be an unnecessary re-
striction on the customers. There is a need for more automated CM support for variants, such
as allowing parallel development on variants, as well as merging and parallel updates to vari-
ants. Third-party CM tools and some research CM systems provide capabilities for dealing
with variants, although an automated solution is still a research issue. Such systems are wor-
thy of examination though.

A.4 Documentation

Documentation pertains to all the relevant information about a software application that needs
to be recorded. This includes requirements, design, code, tests, change logs, etc.

A.4.1 Findings

1. All project personnel were concerned about the limited amount of documen-
tation available to them during the maintenance phase of the life cycle. In
many cases, maintenance project personnel believed that they had been giv-
en incomplete or out-dated documentation when they took charge of the op-
erational system.

2. While fixing and enhancing operational software, all project personnel had
problems keeping the available documentation current (as regards the updat-
ed system).

3. There was little evidence of tool support for integrated documentation. We did
hear of Software Through Pictures being used to generate design docu-
ments, while text editors were used to produce remaining documentation.
Tools that captured links between code, documentation, and design diagrams
did not seem to be used.

4. A few projects were experimenting with SMARTSystem to help them in the
task of understanding and documenting poorly documented existing opera-
tional code.

26 CMU/SEI-93-TR-8

A.4.2 Discussion of Findings

in performing maintenance activities, thorough up-to-date documentation is essential. in prac-
tice we found that such documentation did not exist for a number of projects. The reason for
this is clear: pressure on development schedules leads to cutbacks on document production
and maintenance. ln some cases, contractor organizations had produced the code and hand-
ed it over to an agency maintenance project without sufficient documentation. While such cut-
backs may benefit the development organization, the maintenance organizations often bear
the legacy of such decisions.

In many cases where operational software had been in place for a number of years, the docu-
mentation was totally inadequate or out of date, and efforts were proceeding to try to reverse
anginee: design documentation from existing code. SMARTSystem was in use in a few
projects as an aid in this task. Most project personnel expressed interest in greater tool support
for these activities.

A.4.3 Recommendations

Almost invariably the maintenance of large operational systems suttered due to lack of up-to-
date documentation. In practice, when a project is not meeting its schedule, the decision to
suspend production of detailed documentation in favor of “all-out coding” leads to difficult
maintenance problems later in the life-cycle. Personnel reported that most projects had faced
this maintenance difficulty.

Qur specific recommendations are:

1. Get personnel from the maintenance organizations involved early on, and
continually, with the development of a system to advise on the eventual doc-
umentation needs for the system.

2. Re-examine the agency guidelines on the hand-over of operational systems
from the development to the maintenance organization to assure that ade-
quate documentation has been prepared.

3. Experiment further to examine the costs and benefits of products such as
SMARTSystem which help understand and document existing operational
systems.

4. Investigate the CASE tool market for other possible tools to help in the docu-
mentation and reverse engineering of existing operational systems.

5. lInvestigate and provide better documentation system support for developers
to enable them to produce more accurate and comprehensive documentation
for their systems with less human effort. Examples of technology that assists
in such include structure editing systems and hypertext-based products
where the relationships between code and documentation are more visible.

6. Allow time in the schedule for documentation to be created or updated.

CMU/SEL-93-TR-8 27

A.4.4 Discussion of Recommendations

The recommendations fall into two broad categories. First, the process of development and
hand-over of operational systems need to be improved to ensure that the needs of the main-
tenance organizations are more adequately met. One specific example is to encourage a
member of the future maintenance project to take part in development organization meeting
and provide feedback on documentation needs. Similarly, for complex systems the eventual
user organization should be encouraged to have one or more personnel involved with devel-
opment to ensure the end-user documentation is adequate.

Second, CASE tool support should be further investigated. Current efforts involving PRO-
CASE should continue, and further stucies should be initiated.

A.5 CASE Tools

Computer Aided Software Engineering (CASE) tools are third-party tools that automate parts
of software development and maintenance activities.

A.5.1 Findings

1. In addition to operating system utilities, many projects were using only a small
number of CASE tools to help them in their work (e.g., a design tool, CM toaol,
and less frequently a testing tool).

2. Alt project personnel thought that there were aspects of their work that might
benefit from additional tool support (aithough they did not see the introduction
of new tools as their highest priority).

3. Insome cases, project personnel did not know what specific tools they re-
quired, but only the requirements they had for such tools (e.g., in the area of
re- engineering).

4. Other project personnel knew of particular tools that would be of help to them,
but had neither the time nor resources to bring them in-house and build up
sufficient expertise to make them usable.

5. In most cases project members believed that the tools they were using were
critical to the projects’ success (particularly CM tools).

6. All project personnel valued the work being carried out by the maintenance
group’s software support staff in trying to make tools available to projects
within the agency. Without this they wondered if they would have had the time
and resources to obtain any CASE tools at all.

7. Few projects had any detailed knowledge of CASE tool usage in projects oth-
er than those with which they had previously been directly involved.

A.5.2 Discussion of Findings

While not viewed as being as important to success as having qualified personnel and a well
defined development process, all projects recognized the importance of CASE tools support.
Most often the tools that personnel cited as critical to their work were IDE's Software through

28 CMU/SEI-93-TR-8

Pictures for software design, and PROCASE’s SMARTSystem for CM. Additionally, a number
of projects have been investigating the use of SRI's Software TestWorks to help them in their
testing activities. The corporate CM system, developed within the agency, was also used in a
number of projects for probiem tracking and reporting.

A strong reason for the use of these particular tools appears to be the influence of a CASE tool
coordination role performed by the software support staff, which provided many of these CASE
tools (at no cost) to the projects we interviewed.

in discussions about the benefits of introducing more CASE toois, most project personnel be-
lieved that there were aspects of their work that could be significantly improved with additional
tools. Two areas were most often cited as prime candidates for additional tools:

1. Testing. Most projects had a mainly ad hoc approach to generating test cas-
es, documenting test results, and feeding results to the other stages of the life
cycle. It was felt that tool support for these tasks would be a significant bene-
fit.

2. Reverse Engineering. A number of projects had significant problems with
maintaining code for which design and rationale documentation were non- ex-
istent, out of date, or of poor quality. The ability to take a running system and
reverse engineer some parts of this documentation would greatly facilitate fu-
ture maintenance of these systems.

Some projects had been investigating tools that helped in these tasks, but little day-to-day sup-
port currently exists in these areas.

A.5.3 Recommendations

The introduction and use of further CASE tools offers much potential benefit to the projects we
interviewed. While it is clear that tools in themselves will not solve many of the development
and maintenance problems experienced by the projects, additional too! support can have an
impact in some areas.

it is interesting to note that the project members themselves recognized where additional tool
support would be of benefit, and where their manual procedures were adequate. This points
to the fact that the introduction of a wide-ranging, comprehensive, automated support facility
would be counterproductive in some cases. A much more flexible approach to gradually and
incrementally expanding a project’s tool set seems appropriate.

Little inter-project communication occurs regarding the tools being used in different projects.
By improving inter-project communication, information can be shared and reused. CASE tools
tend to be large, complex artifacts that require significant effort to build up sufficient expertise
to make their use of practical benefit. This steep learning curve is much more costly if each
project experiences it in isolation. While the work of the software support staff has had an im-
portant impact in providing a central poo! of knowledge on CASE tools, there are many more
tasks that can help support improvement in this area.

CMU/SEI-93-TR-8 29

Our specific recommendations are:

1. Raise awareness of the range of CASE tools currently available in the mar-
ketplace (e.g., by inviting vendors to make presentations at the agency).

2. Build up an accessible body of knowledge on CASE tools for use within the
agency so that tool users have access to information on the availability, use,
costs, and benefits of CASE tools.

3. Be more systematic in the reuse of existing conventions and tool know-how
across projects by capturing lessons learned from CASE tool use, document-
ing naming conventions and usage scenarios for tools, and developing guide-
lines that facilitate their use.

4. Provide greater encouragement and promotion of CASE tool user groups;
this perhaps requires the agency resources and management commitment to
ensure they are attended and successful (e.g.. paying for external speakers).

5. Expand the role of a central group for CASE tool acquisition, promotion, and
introduction as currently performed by the software support staff.

6. Continue dialog with CASE tool vendors to ensure that the vendors are aware
of the agency's particular needs with regard to CASE tool support.

A.5.4 Discussion of Recommendations

Many of the problems identified in our discussions can be addressed by increasing the visibility
ot CASE tool use and practices within the agency. While work is taking place in this area, it is
important to highlight the main activities involved. Three key aspects need to be recognized.

1. Greater publicity, recognition, and information transfer from the successful
application of CASE tools is required. There do seem to be users of CASE
tools who have important positive experiences with their use. There are also
less successful examples of CASE tool use. It is important that information
about such experiences are as widely disseminated as possible.

2. Having a central point of contact for the acquisition, promotion, and encour-
agement of CASE tool use does seem to be having a positive effect. While
issues of funding, resource requirements, and penetration will continue to be
a problem, this work should be expanded.

3. Management support and recognition for these activities will be essential to
its success. Providing the time and resources to find out about new CASE
tools, build up expertise, and consistently and effectively use the tools will al-
ways be a thorny issue.

A.6 CASE Tool Integration

We here address integration of CASE tools in support of the development process.

30 CMU/SEI-93-TR-8

A.6.1 Findings

Obtaining or assembling an integrated set of CASE tools was viewed as less
important than the need to have skilled project personnel communicating and
interacting effectively.

b
.

2. Use of integrated tool sets, while expressed as desirable, was rarely a high
priority for the projects.

3. In most cases the integration of CASE tools took place through manual data
transfer or simple automated work-arounds.

4. Most CASE tools were being introduced in a piecemeal fashion as particular
needs arose, or as opportunities to acquire particular tools came along.

A.6.2 Discussion of Findings

To most project personnel interviewed, personnel issues were the major contributor aftecting
the productivity and quality of their work. CASE tools were seen as important, but only be-
cause they empowered project personnel. As a result, CASE tools had not been acquired and
adopted as part of a well-defined procedure to create an integrated tool set.

For a project to operate effectively, integration, cooperation, and coordination needs to occur
on (at least) three levels:

1. Between project personnel. A working environment is required that facilitates
and encourages sharing and cooperation between project personnel. Physi-
cal location, for example, is one factor affecting this. The fact that one project
was moved from being in close proximity on a single floor to being dispersed
on a number of floors was highlighted as having a significant detrimental ef-
fect on the progress of the project’s work.

2. Between CASE tools. Most projects used tools acquired at different times and
from different vendors. As a result, they had to devise manual procedures and
conventions, and simple automated techniques for using the tools together.

3. Between project personnel, CASE tools, and development process. Person-
nel and tools must work together to implement an effective development or
maintenance process. Most projects found it to be a struggle to ensure that
each of the three elements were supporting the other two, rather than at the
expense of the others.

A.6.3 Recommendations

While clearly such issues of integration are complex and difficult to address, the effects of even
small improvements would have far-reaching consequences on project effectiveness. In par-
ticular, it seems unlikely that the introduction of more complex automated support will have sig-
nificant impact unless it also supports changes in the development approach to take
advantage of those tools.

CMU/SEI-93-TR-8 3

Our specific recommendations are:

1. Promote an approach to CASE tool integration that considers at integration to
be a design activity that ties the use of collections of CASE tools to the par-
ticular needs of project personnel in support of an effective process. This
should provide a better context in which to evaluate potential CASE tool pur-
chases.

2. Continue experimentation and analysis of integrated tool sets so as to deter-
mine their possible usefulness to the agency’s projects. This will help in in-
creasing understanding of the different approaches to CASE too! integration,
and in enumerating the benefits and costs associated with each one.

3. Facilitate communication of lessons learned in both the CASE toof integration
experiments and the current use of CASE tools in the agency'’s projects.

4. Pay particular attention to the CASE tool needs of long-term maintenance
projects, as opposed to new development projects. Dealing with code that
has a legacy requires a focus on different techniques such as reverse engi-
neering and re-engineering.

5. Encourage projects to define a tool integration strategy document during
project start-up, which will address tool integration needs in supporting the
project’s development and maintenance process.

A.6.4 Discussion of Recommendations

The usefulness of integrated tool sets in supporting the agency’s projects requires further ex-
perimentation and evaluation to provide greater insight into the current state-of-the-practice.
There are frequent announcements of new “integrated CASE tools” and “integration prod-
ucts.” These should continue to be studied carefully with regard to their possible use within the
agency. Long-term maintenance of operational systems poses very stringent requirements on
CASE tools. Most existing tools do not meet these requirements.

Additionally, project personnel should be encouraged early in a project's life to describe the
anticipated tool needs of the project and to create a plan for acquiring and using tools in sup-
port of the project. Two important aspects of such a document are the integration strategy pro-
posed for the tools and an analysis of the flexibility of such an approach in allowing the tool set
to grow and evolve over the lifetime of the project.

A.7 Tooling for Maintenance and for New Software
Development

This concerns the relationship between tool needs in a maintenance setting as opposed to
those in a recently-started software development project.

32 CMU/SEI-93-TR-8

A.7.1 Findings

1. Maintenance projects and new development projects have different priorities
and needs.

2. Maintenance personnel indicated that they have inadequate tooling to sup-
port them.

A.7.2 Discussion of Findings

There is an impression that projects doing new software development are given more support
(in terms of personnel and tools) than maintenance projects. New projects have no legacies
to deal with since they are starting from scratch; maintenance projects however, have t5 con-
tend with whatever quality of product is given to them and whatever artifacts (such as docu-
mentation) are missing. Tools are needed to assist the maintenance team.

A.7.3 Recommendations

While in theory new software development and maintenance should be similar activities and
thus require similar tools, this is not the case in practice. Code handed over to maintenance is
often accompanied by insufficient and out-dated documentation. The maintainer then has to
deal with the legacy of the operational system over extended periods of time. Thus, there is a
different emphasis placed on the importance of particular tools for new software development
compared to maintenance. In our recommendations we take the viewpoint of a maintenance
engineer. Our specific recommendations are:

1. Discern the differences in emphasis between maintenance versus new
projects and provide appropriate tooling and practices for each.

2. Investin tooling for maintenance in the following order of importance:
a. reverse engineering (such as capturing the structure of the code)
b. re-engineering (such as assisting in restructuring the code)
c. testing (such as collecting unit tests for the regression suite)

d. configuration management (such as control over the derivation of
executable objects)

e. design (such as drawing the architecture of the code)

f. documentation tools (such as capabilities for easily placing pictures
into text)

g. integration of tools (such as Software Through Pictures with
SMARTSystem with code generation capabilities and examining
integration frameworks such as HP's Softbench or Sun's ToolTalk)

h. metrics tools (such as data for management that will aid in resource
aliocation and scheduling)

CMU/SEI-93-TR-8 a3

3. In e adoption of maintenance tools, we suggest the following set of activi-
ties:

a. define the life-cycle process model

b. acquire a set of CASE tools that support design, documentation,
configuration management, testing, debugging and simulation (if
necessary)

c. integrate tools in a way that encourages data interoperability between
the tools

d. provide training on tools and the life-cycle model for programmers
e. educate the team on the whole view of the project
f. provide team building exercises

4. Deliver the development environment with the code to aid maintenance. i
that is not possible, provide for interoperability between the development and
maintenance environments.

5. Support a design-for-maintenance philosophy for new projects; that is, by de-
veloping quality software and support materials in order to avoid unnecessary
problems faced during the life-cycle support phase. There is no easy solution
for this since it requires a corporate commitment to improved software desian.

A.7.4 Discussion of Recommendations

The tool:ng needs for maintenance are based on the need to analyze code, change code, test
the changes, and keep a history of those changes. The design-for-maintenance philosophy
emphasizes the need to consider the maintenance needs of an operational system during de-
velopment (e.g., extensive documentation and testing). In this way, maintenance activities are
less likely to be a major problem in the future. Studies have shown that the expense of fixing
problems early in the life-cycle is many times less than fixing the same problem once the sys-
tem is in operation.

A.8 Sharing Knowledge of Tools

Sharing knowledge about the functionality and availability of tools is the topic of this category.

A.8.1 Findings

1. Upper management does not seem aware of the tooling needs of technical
personnel.

2. There is a lack of coordination in tools procurement throughout the mainte-
nance group.

3. Lessons learned about specific tools are not disseminated.

34 CMU/SEI-93-TR-8

A.8.2 Discussion of Findings

We were told that upper levels of management do not seem aware of the tooling needs of life-
cycle support projects. This, coupled to the perceived low status of maintenance projects, re-
sults, at least in some cases, in too little funding for software tools. However, we also heard
that some management does try to support tool needs, but that funding is simply stretched too
thin,

Having central CASE tool information available has been much appreciated by the project per-
sonnel we interviewed. However, there seemed to be a lack of coordination between the
groups themselves in terms of their tools needs. if more coordination occurred, it is likely that
greater leverage could be applied to the tool vendors when toois are purchased.

Cultural isolation of projects within the agency is widespread. This isolation is often unneces-
sary and tends to prevent valuable experience from being disseminated between projects.

A.8.3 Recommendations

Technical personnel must inform management of their tool needs. Management must have a
plan for the introduction of tools. Thus, our specific recommendations are:

1. Encourage technical personnel to more aggressively market their project
tools needs to upper management.

2. Coordinate the purchase of tools beyond the project level.

3. Foster communication between projects. Means of doing this include: initiat-
ing user groups for specific tool areas, holding seminars on tool issues and
products, organizing an electronic bulletin board, and producing short reports
on too! experience.

A.8.4 Discussion of Recommendations

It may be helpful for personnel on different projects to meet to identify common types of tools
used, and to develop a plan for organizing tool purchases. Such a plan would provide upper
management with a broader picture of the maintenance support needs of the maintenance
group (e.g.. why design, reverse engineering, and testing tools are essential components).
The plan could form the basis for interaction with vendors and provide a consistent basis for
such interaction across maintenance-group projects.

With the pressure of getting the job done, it is easy to ignore the above communication issues
as they appear to consume valuable time. However, in the longer run, communication on tool
needs and experiences will more than pay off in terms of productivity and quality.

A.9 Training of Technical Personnel

Training concerns the kind of education provided to personne! developing and maintaining
code.

CMU/SEI93-TR-8 B 35

A9.1 Findings

1. Training is not sufficiently encouraged since time is not clearly aflocated for
this function.

2. Pressure to getthe job done is a factor in inhibiting training. We were told that
the right training was not given to the right people at the right time.

3. Some technical staff are not provided with a knowledge of the products they
are working on.

4. Because of turnover of in-house contractor personnel, training costs for these
individuals was high.

A.9.2 Discussion of findings

While training facilities do exist, the evidence suggests that they appear to be inadequately
used. For example, training is given on SQA standards, but this training is provided on a vol-
untary basis. Because of tight schedules, few personnel appear to paricipate. Further, there
does not appear to be a systematic approach to training personnel; for example, training is not
built into project schedules, nor does management vigorously support the training of technical
personnel. It was expressed that the personnel most likely to receive training were those who
had the time rather than those who had the need, and that people “feel guilty” about taking
time off for training.

It was expressed to us that programming staff sometimes do not understand the wider context
of the components they are working on. {n fact, one view expressed was that it might be de-
sirable for programmers to perform their assignments in isolation from related activities.

It takes time for new contractor personnel to become effective and integrated members of any
project. They are likely to lack an understanding of the organization in which they find them-
selves or the project's history, of the tools and techniques which the project uses, and of the
standards which apply. With significant turnover in contractor personnel, the implicit costs of
contractor education can be high.

A.9.3 Recommendations

Training is a fundamental task for any corporation. A corporate plan must be established and
enforced. The right people must receive the right training at the right time. Our specific recom-
mendations are:

1. Plan for incorporating more time and resources into project schedules in or-
der to encourage training. Training costs should be a visible part of project
costs.

2. Ensure that training policies and plans are visibly supported by management
and that training resuits are tracked to ensure effectiveness. Coordinate ven-
dor training on software products (e.g., have training classes on tools involv-

ing personnel in multiple projects). This could be less expensive than ad hoc
vendor training.

36 CMU/SEI-93-TR-8

3. Enforce internal training on the agency software standards. (See also section
on Quality Assurance and Standards.)

4. Provide informal training to the programming staff about the nature of the
project and products they are working on.

5. Make efforts to retain qualified contractor personnel or to rehire those who,
because of prior the agency experience, will require less training.

A.9.4 Discussion of Recommendations

Training needs to be visibly supported by management, and training policies and plans should
be understood by all. “Visible support” implies that management at and above the project level
take a positive public stand on promot.~ training. Certain training should be mandatory (e.g.,
on standards); other training should be highly encouraged (e.g., in documentation production).
Further training may be enferced depending on the context (e.g., if a tool is to support a
project, then the engineers in questions should have training in the tool's use.)

The up-front costs of training are clear; this is a disincentive to investing in an effective training
program. However, while the costs of not training are less tangible, they are often higher in the
long run. Training needs to focus on issues which reduce costs and improve quality in the long
term, such as training for effective documentation (not just writing, but the whole documenta-
tion process) and writing of well-designed code with meaningful comments. Such improve-
ments can have a dramatic effect on life-cycle maintenance costs. Second, ccordinated
training will bring technical personnel into greater contact with each other, and better commu-
nication will result from uniform practices (e.g., in performing software inspections). Finally, by
coordinating all internal and external training, training consistency will improve.

A.10 Maintenance Teams

This concerns the personnel who make up the maintenance teams and the difficult task of per-
forming maintenance.

A.10.1 Findings

1. Many personnel believed that maintenance activities have low prestige, are
poorly supported by management, and have a low priority at the corporate
level.

2. Project personnel felt that not enough experienced people are assigned to
maintenance activities.

3. Code being turned over to maintenance generally does not come with ade-
quate documentation.

4. Code turned over to maintenance is generally not of high quality.

CMU/SEI-93-TR-8 37

5. Moy maintenance personnel saw their jobs as important, generally exciting
and challenging. However, this view did not seem to be shared by non-main-
tenance personnel.

6. Code is generally not designed to be amenable to change.

A.10.2 Discussion of Findings

The task of performing maintenance is generally held in low esteem. However, the people who
choose to carry out maintenance see it as a most challenging task, particularly in the context
of variable quality code, missing supporting documentation, and lack of consideration for
maintenance needs during design.

A.10.3 Recommendations

Maintenance is a very challenging job and requires motivated, clever people. These people
need to be supported in terms of tools and rewards. Thus, our specific recommendations are:

1. Improve the prestige level of maintenance projects by providing more and
better tools, hiring more experienced personnel and increasing training effec-
tiveness. Include rewards and enticements.

2. Designate specific roles (such as CM person, test manager, and documenta-
tion manager) in maintenance teams and recognize the importance of these
roles (for example, through rewards and titles). For large projects, these roles
can be filled by a person. For small projects, one person may hold multiple
roles. Roles need to be recognized and supported by management since they
are crucial to maintenance and support an attitude of quality in process and
product.

3. Set up a user group to capture and promote more effective ways of perform-
ing maintenance and sharing solutions and work-arounds.

A.10.4 Discussion of Recommendations

Maintenance is a difficult and challenging job. Teams performing maintenance require moti-
vated and experienced personnel. These individuals need to be dutifully supported and re-
warded.

The quality of applications passed on to the maintenance team needs to be higher. The insti-
tutionalization of quality assurance practices will assist in such, as will providing better tools
that capture all the information about the application. Extra time should be included in sched-
ules to allow for the development and updating of documentation.

Much expertise is ignored when applications are passed on to maintenance. It is necessary to
capture that expertise and pass it on. This can be done by including maintenance people in
the development team or vice versa. Also, user groups should be set up to meet a few times
each year just to pass on information about lessons learned during development and mainte-
nance.

38 CMUI/SEI-93-TR-8

A.11 Contractor Management

Contractor management concerns the important relationship that exists between contractor
personne! and the agency.

A.11.1 Findings

1. Lack of supervision on external contractors has often resulted in reduced
product quality.

2. Because of high turnover, training costs for in-house contractor personnel are
high.

A.11.2 Discussion of Findings

We were told that the quality of contracting organizations varied widely. This variation in quality
was such that, at least as reflected in some of the project personnel we interviewed, major in-
house rework had to be performed. This poor quality could be a symptom of inadequate con-
tractor evaluations during source selection process.

The cost of inadequate contractor work is quite high. Lack of supervision of contractor organi-
zations results in the delivery of products which are often poorly documented and not well de-
signed for maintenance. This problem is exacerbated by the pressures imposed on
contractors to meet schedules, with the result that some major problems are identified only af-
ter delivery.

An important point to note is that the turnover of in-house contracting personnel results in high
training costs since new personnel often need to be trained in the techniques used by the
project. A hidden cost is incurred since new personnel take some time to understand their work
in the context of the project.

A.11.3 Recommendations

Evaluating and monitoring contractors is a difficult and time-consuming task. While we recog-
nize that ensuring the quality and correctness of contractors’ work is in many cases impossi-
ble, we make the following specific recommendations that may improve the situation:

1. Re-examine the contractor evaluation process prior to awarding the contract.
For example, a technique such as SEl's Software Capability Evaluation
(SCE) could be used to lower the risk associated with source selection.

2. Form joint customer/contractor teams to work on mutual problems.

3. Improve the monitoring of contracting personnel and contracted products. As
§n 1) above, SCE can be used to support this monitoring process. In the mon-
itoring phase, SCE’s can be carried out by support or contractor personnel.

4. Reward contractors who demonstrate quality improvements with:

sreduced supervision
¢ additional contract awards

CMU/SEI-83-TR-8 39

5. Encourage contractors to train their personnel in needed disciplines.

6. Retain or rehire those contract personnel for in-house work who have already
been trained and/or have familiarity with the agency’s culture.

A.11.4 Discussion of Recommendations

As has often been stated, going with a contractor simply because it offers the lowest bid may
turn out to be a costly error. However, it is recognized that such a practice as favoring certain
suppliers may conflict with current agency (or DoD) regulations.

While we did not investigate the cause of poor contractors, inadequate contractor evaluation
during source selection is a strong possibility. If this is the case, use of a technique such as
SE!'s Software Capability Evaluation could be considered since it provides a formal and con-
sistent way of evaluating multiple contractors.

improved monitoring of the contractor will ensure that costly mistakes are less likely to occur.
The degree to which monitoring is required depends on the past performance of the contractor
and the degree to which the contractor is familiar with the technical and management issues
of the project.

A.12 Corporate Culture

Corporate culture concerns the kind of culture that exists within the agency. We particularly
focus on the ways in which projects interact, common perceptions within groups, and beliefs
about how improvement in the working environment is attained.

A.12.1 Findings

1. Project groups and their work tend to be too compartmentalized; this reduces
both the amount of communication and information sharing.

2. Improvementin tools, practices, and techniques is difficult because very little
technical information and experiences are shared and expertise is not pooled
(centralized).

3. Maintenance does not have as prestigious a reputation within the organiza-
tion as does new software development. There appears to be a “them versus
us” attitude between developers and maintainers which raises the level of dis-
trust and disharmony.

A.12.2 Discussion of Findings

Many interviewees felt there was little improvement in their working environment over time with
regards to expertise being disseminated, better tools being introduced, and better quality ap-
plications being built and maintained.

40 CMU/SEI-83-TR-8

A.12.3 Recommendations

A corporate culture is produced by all the people who work in the corporation and is promul-
gated by management. To change the culture requires strong and active leadership.

Thus, our specific recommendations are:

1. Promote and disseminate successful solutions to technical problems within
the agency and encourage others to follow suit.

2. investigate why there are so many limitations to the sharing of information be-
tween projects and pooling of expertise.

3. Enhance the status of maintenance organizations through:

® encouraging greater interplay between related development and
maintenance groups

* empowering maintenance groups with control over acceptance of newly
developed software

* providing incentives for personnel to take on maintenance responsibilities

A.12.4 Discussion of Recommendations

Expertise needs to be valued by being rewarded. This can be done in many ways. For exam-
ple, direct, personal awards can be made to individuals. More indirect recognition can come
from encouraging individuals to disseminate their expertise through seminars or papers, or be-
ing made consultants to other projects.

Corporate-wide policies for improving quality and expertise, such as via TQM practices, need
to be adopted. This requires adequate training time and the adoption of good quality tools. The
status of existing software engineering environments needs to be thoroughly evaluated and a
plan put in place to ensure that the quality of the environments will progress over time. An im-
provement philosophy needs to be adopted. People need to see that improvement is a priority
and that it will happen.

A.13 Corporate Communications

Corporate communications concern how a corporation communicates with its own employees,
advocates communication between projects, and how it shares and disseminates the techni-
cal expertise of its members.

A.13.1 Findings

1. Effective communication, whether between software maintainers and con-
tractors or between software maintainers and customers, varies widely.

2. Insome cases, technical personnel believe that management is not sufficient-
ly aware of the technical needs of their projects.

CMU/SEI-93-TR-8 41

3. Impediments to a coordinated project team included the use of outside con-
tractors for some or all of the design and implementation work (due to cultural,
educational and motivational differences) and dispersed physical location of
project personnel (which increases communication problems).

A.13.2 Discussion of Findings

In some cases, interactions with customers are very close. In one case, a customer represen-
tative stayed with a project for a period of years; in another, the customer was part of a
project's change control board. However, in another case, scheduling time to meet with a cus-
tomer proved difficult; this resulted in requirements not being well specified. Lack of commu-
nications with contractors (e.g., lack of effective contractor reviews) has resulted in some
serious problems. For example, software has had to be totally rewritten as a result of inade-
quate contractor work. Communication between projects, for example, in software engineering
issues, was very limited. Thus, valuable lessons learned were not exploited.

A.13.3 Recommendations

Communication between projects and people should be encouraged since this is the best way
to share expertise and resolve issues. Thus, our specific recommendations are:

1. Establish a corporate policy that encourages frequent meetings between the
maintenance projects and their customers and contractors.

2. Encourage customers to interact with project developers during the earlier
phases of the project, not just during the product installation phase.

3. Encourage inter-project communications in technical areas. This could in-
volve, for example: holding seminars, encouraging active special interest
groups, establishing bulletin boards (if possible), and documenting experienc-
es through internal papers.

4. Involve senior technical personnel in upper-management meetings and deci-
sion-making that involves technical issues. One suggestion is to establish a
technical advisory board to keep management abreast of current technical is-
sues and problems.

A.13.4 Discussion of Recommendations

More frequent meetings between maintenance personnel and the customer will help identify
problems (e.g., in requirements) early on, when they are more easily corrected. Regular re-
view of contractor work, as it is being performed, will reduce the likelihood of major undiscov-
ered problems. Delays in identifying such problems have, in the past, resulted in significant
cost increases.

Many project personnel we talked to who were facing similar technical problems in, for exam-
ple, CM and software engineering tools support. We found that the software support staff was
much appreciated because of its efforts to support the technical needs of the projects. How-
ever, direct project-to-project interaction seemed to be lacking. By fostering communications
between projects, not only are costs likely to decrease due to improved coordination of tech-

42 CMU/SEI-83-TR-8

nical needs, but lessons learned can be more widely disseminated. As a result, similar prob-
lems can be handled more effectively. The work taking place to establish an “experience
factory” at NASA’'s Goddard Space Center may be a useful model to examine. (A reference
to this work is given in Appendix B.4.)

In some cases we heard that upper management was supportive of projects with respect to
both tools and hardware. In other cases, we heard the upper management “do not understand
the real needs of the development level,” and that projects had to do too much “scrounging
around.” It would thus appear that, in some cases, better communications between upper
management and technical personnel would be beneficial. Hence we make the final recom-
mendation to foster communications between technical staff and management.

A.14 Quality Assurance and Standards

Quality assurance concerns following a process that produces a high quality product. Usually
standards are designed to encourage such a process.

A.14.1 Findings

1. We found that the agency has, in general, a well-defined set of SQA stan-
dards for the practice of software engineering, although these do not address
some important areas in detail (e.g., software maintenance).

2. While most technical personnel appear to be aware of the agency SQA stan-
dards, few projects appear to be enforcing them.

3. While training on standards is provided, few projects take advantage of this
training since it is provided on a voluntary basis.

4. There does not appear to be any independent SQA organization or activity
which assures that quality-related standards are being met.

A.14.2 Discussion of Findings

The agency's SQA standards appear to form a stable basis from which to ensure effective soft-
ware quality. However, in no projects where personnel were interviewed are SQA standards
being enforced in all appropriate areas. Enforcement of these standards should be at the
agency organizational level, rather than only at the maintenance-group level. This is important
since the maintenance group does not work in a vacuum, but has to interact with other devel-
opers (for example, in the development group), with customers, and with contractors. if none
of these groups adopt the SQA standards, then it is hard to see how maintenance group can
effectively apply them.

We found that the agency standards did not cover certain issues which should have been cov-
ered. In particular, the standards did not cover maintenance activities. In addition there was
no explicit mention of regression testing. This form of testing is particularly important to a main-
tenance crganization.

CMU/SEI-83-TR-8 43

We heard that, relative to software development, maintenance is a low-status activity. This
perception is likely to have a long-term negative impact on software quality. We were told, for
example, that maintenance groups had too little control over the quality of software being de-
livered to them. This results in a disincentive for development groups to produce a quality
product, particularly with respect to product documentation. We also heard that the mainte-
nance group tends to attract relatively inexperienced personnel (a symptom of the low status
of the work), and that there is a problem in keeping young software engineers in the mainte-
nance area. Maintenance is a complex activity requiring a diverse set of skills. The challenges
and rewards of performing maintenance tasks need to be emphasized.

A.14.3 Recommendations

To ensure quality in process and product, practices such as those of Total Quality Manage-
ment (TQM) should be in place along with supporting corporation standards and policies.
Thus, our specific recommendations are:

1. Provide training in SQA standards to all personnel.

2. Putin place a mechanism to ensure that the agency’s SQA standards are be-
ing followed throughout all the agency groups involved in software engineer-

ing.

3. Arrange for life-cycle support personnel to monitor and provide guidance to
developers during development efforts in order that products have maintain-
able characteristics.

4. Enforce a policy that products are not to be accepted for life-cycle support un-
til they have passed a set of quality tests.

5. Enhance the agency’'s SQA standards with:

» regression testing practices
« a focus on maintenance as well as new software development
« examples of how to use the standards

» tailored guidelines so that projects can adapt the standard’s practices to
meet their specific needs

6. Review the agency’s SQA standards for additional items in light of the current
agency emphasis on TQM.

A.14.4 Discussion of Recommendations

In order to ensure compliance with the SQA standards, enforced training in these standards
must be given. However, training itself is insufficient. Independent auditing of projects must
also be carried to ensure compliance. Therefore, an SQA organization or activity, with an in-
dependent (non-project) reporting channel should be established. The objective of this func-
tion is primarily to guarantee projects are following the procedures in the standards, rather
than directly checking the quality of the products themselves.

44 CMU/SEI-93-TR-8

The maintenance group must be empowered to control the quality of the products delivered to
them. With enforced quality standards in place, the need for the maintenance group to reject
incoming products should be significantly reduced. The ability of the maintenance group to
control its receivables will also improve if the problem of the group’s perceived low status is
addressed.

A.15 Hardware

Hardware concerns the kinds of platforms used and the implications for CASE tool support.

A.15.1 Findings

1. The project personnel interviewed employed a wide variety of hardware plat-
forms, and at times experienced considerable difficulties because of this het-
erogeneous environment.

2. The impact of this wide variety of hardware was that skills, knowledge, and
CASE tools were often not reusable from one project to another.

3. One group felt that they were not receiving sufficient operating system and
CASE tools support due to employing a less common hardware and system
software configuration.

A.15.2 Discussion of Findings

The age and long life of many operational systems as well as the diversity of the agency cus-
tomers have led to a wide variety of hardware platforms being used. This introduces obvious
difficulties in terms of the skills required to use the hardware, and the lack of easily transferable
CASE tools from one hardware platform to another. Reuse of people, skills, and support soft-
ware such as CASE tools is severely limited in such an environment.

One of the consequences of a working environment where heterogeneous systems are used
is that people working on less popular hardware feel as though they are out of the mainstream
and are receiving insufficient attention. For example, most project personnel we interviewed
had Unix-based workstations as their development environment, and the major CASE tools
that were used operated in this environment. The existing VMS-based projects are not able to
transfer much of this knowiedge to their working environment.

A.15.3 Recommendations

While diversity of hardware platforms is inevitable, careful consideration must be taken to try
to provide CASE tool support that is as portable as possible across as many different hardware
configurations as possible. Issues of which hardware platforms are supported by a CASE tool
should be determined as early as possible.

Our specific recommendations are:

CMU/SEI-93-TR-8 45

1. Support heterogeneous platforms. When selecting and acquiring CASE tools,
particular care should be taken in to considering the needs of developers us-
ing many different hardware platforms. CASE tool support is required on all
platiorms.

2. Insist on a requirement of portability. in discussions with CASE tool vendors,
the agency should make questions of tool portability across multiple hardware
piatforms a high priority.

3. Continue investigations in the area of hardware and platform standardization
efforts {e.g., POSIX) and their potential influence on the agency.

A.15.4 Discussion of Recommendations

With the speed at which hardware improvements are taking place, it seems clear that there
will not be the opportunity to have a single hardware platforin at any foreseeable point in the
future. In this situation, CASE tool vendors should be asked in detail about their current and
future plans with regard to supporting multiple platforms, client/server architectures, support
for existing standards, and so on.

46 CMU/SEI-93-TR-8

Appendix B Recommended Reading

Below is a list of reports and articles that we feel are most appropriate for the issues confront-
ing the agency. They are grouped by topic. A brief annotation is provided for each.

B.1 Addressing Quality

[Mansir 89] Mansir, B.E.; & Schacht, N.R. “Total Quality Management: A Guide to Implemen-
tation.” Maryland: Logistics Management Institute, August 1989.

* Presents a detailed discussion on Total Quality Management and its strategy
for implementation.

[Brown 91] Brown, P. G. “QFD: Echoing the Voice of the Customer.” AT&T Technical Journal
(March/April 1991): 18-32.

® Describes an approach that allows the customer to have an effect on the
development of the product.

[Caldiera 92] Caldiera, G.; & Cantone, G. “A Reference Architecture for the Component Fac-
tory.” ACM Transactions on Software Engineering and Methodology 1, January 1992.

* Discusses the concept of the “experience factory” which relates to improved
inter-project communication and capturing lessons learned.

B.2 Addressing Risk

{Boehm 89] Boehm, B.W. Software Risk Management. California: IEEE Computer Society
Press, 1989.

* Discusses many issues of risk management.

[Charette 89] Charette, R.N. Software Engineering Risk Analysis and Management. Intertext
Publications / McGraw-Hill Book Company, 1989.

* Looks specifically at the risk issues affecting software.

[Kirkpatrick 92] Kirkpatrick, R. J.; Walker, J.A.; & Firth, R. “Risk Management: An SE! Apprais-
al” SEl Technical Review ‘92, Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

* Gives a description of risks associated with software development.

CMU/SEI-93-TR-8 a7

[Fairley 89] Fairley, R.E. “Risk Management: The Key to Successful Software Projects.” Pro-
ceedings of Third IFAC Workshop on Management of Software Projects. Indiana: Purdue Uni-
versity: Oct. 30 - Nov. 1, 1989.

¢ Describes a systematic approach to risk management.

B.3 Addressing Technology Transition

[Pressman 90] Pressman, R.S. “Managing the Transition to a Software Engineering Environ-
ment.” Software Engineering: Tools, Practice, Auerbach Publishers, Vol. 1, No. 2, July/Aug.
1990: 33-41.

¢ Details technology transition to a software development environment.

[Fowler 92] Fowler, P.; & Levine, L. “Toward a Defined Process of Software Technology Tran-
sition.” American Programmer March 1992.

* Presents models for technology transition.

[Bouldin 89] Bouldin, B. Agents of Change: Managing the Introduction of Automated Tools. En-
glewood Cliffs, NJ,: Yourdon Press, 1989.

¢ Discusses the issues of introducing CASE tools into an organization.

[ODR 85] O. D. Resources Inc. “Building Commitment to Technological Change.” Georgia:
O.D. Resources Inc. 1985: 7.

* Highlights a phased approach toward instituting change.

B.4 Addressing Process Improvement

[Humphrey 88] Humphrey, W. S. “Characterizing the Software Process: A Maturity Frame-
work.” IEEE Software. March 1988: 73-79.

¢ Describes five levels of process maturity within an organization.

[Humphrey 91] Humphrey, W. S.; Snyder, T.R.; & Willis, R.R. “Software Process Improvement
at Hughes Aircraft.” IEEE Software: July 1991: 11-23.

* Presents an example of improving the maturity of a corporation.

[Grady 87] Grady, R.B.; & Caswell, D.L. Software Metrics: Implementing a Company-Wide
Program. Englewood Cliffs N.J.: Prentice Hall, 1987.

¢ Explains capturing metrics in an organization.

48 CMU/SEI-93-TR-8

B.5 CASE Tools

[Zarrella 90} Zarrella, P. CASE Tool Integration and Standardization (CMU/SEI-90-TR-14,
ADA235640). Pittsburgh, Pa.: Software Engineering Institute, Carnegie Melion University,
Dec. 1990.

e Gives a short discussion of a number of standardization efforts in relation to
CASE tool integration.

[Huff 92] Huff, C.; Smith, D.; Morris, E.; & Zarrella, P. Proceedings of the CASE Management
Workshop (CMU/SEI-92-TR-6, ADA258234). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1992.

® Presents the results of a workshop dedicated to CASE acquisition issues.

[Holbrook 91] Holbrook, H.B.; & Jones, L.G. An International Survey on Experiences with Soft-
ware Maintenance Tools The Hague: Shape Technical Centre Consultant Report 78, April
1991.

e Gives a survey of software maintenance tool usage.

[Morris 91] Morris, E.; Feiler, P.; & Smith, D. Case Studies in Environment Integration
(CMU/SEI-91-TR-13, ADA248152). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, Dec. 1991.

* Presents results of studying several environments and examining what
issues affect integration.

[IEEE 92] IEEE Computer Society Proceedings of the 5th International Workshop on Comput-
er-Aided Software Engineering, Montreal, Canada: IEEE Computer Society Press, July 1992.

¢ Contains papers presented at a workshop dedicated to CASE tools and their
use.

B.6 Configuration Management Issues

[Dart 91] Dart, S.A. “Concepts in Configuration Management Systems,” pp 1-12. Proceedings
of Third International Workshop on Software Configuration Management Trondheim Norway:
June 1991.

* Gives a description of the state of the art in CM systems.

[Dart 92] Dant, S.A. “The Past, Present and Future of Contfiguration Management,” Proceed-
ings of IFIP World Congress. Spain: Sept. 1992.

¢ Gives a review of issues facing practitioners, managers, and vendors for the
future of CM systems.

CMU/SEI-93-TR-8 49

[Feiler 91)] Feiler, P. H. Configuration Management Models in Commercial Environments
(CMU/SEI-91-TR-7, ADA235782). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, March 1991,

* Presents a categorization of CM systems for programmers.

[Whitgift 91] Whitgift, D. Software Configuration Management: Methods and Tools. London:
John Wiley and Sons, June, 1991.

* Gives an overview of CM concepts and a number of CM systems.

[SCM] Proceedings of International Workshops on Software Configuration Management, Los
Alamitos, CA: ACM SIGSOFT, IEEE Computer Society (4 workshops held).

* Presents a series of workshops on current research in CM issues.

B.7 CASE Tool Integration

[Wallnau 92] Wallnau, K.C. Issues and Techniques of CASE Integration with Configuration
Management (CMU/SEI-92-TR-5, ADA253323). Pittsburgh, Pa.: Software Engineering Insti-
tute, Carnegie Mellon University, March 1992.

* Presents models for viewing integration of CASE and CM tools.

[Brown 92] Brown, A.W.; Feiler, P.H.; & Wallnau, K.C. “Understanding Integration in a Soft-
ware Development Environment.” Proceedings of the 2nd International Conference on Sys-
tems Integration. Morristown, NJ: IEEE Computer Society Press, June 1992.

* Discusses a services-based view of CASE tool integration.

[Brown 92a] Brown, AW._; Feiler, P.H.; & Wallnau, K.C. “Past and Future Models of CASE In-
tegration.” Proceedings of the 5th International Workshop on Computer-Aided Software Engi-
neering: Montreal, Canada: IEEE Computer Society Press, July 1992.

¢ Gives a review of CASE integration approaches.

fThomas 92] Thomas, M.l.; & Nejmeh, B. “Definitions of Tool Integration for Environments.”
IEEE Software 9, 2, March 1992, 29-35.

* Presents a set of definitions and goals for CASE tcal integration.

50 CMU/SEI-93-TR-8

lf

UNLIMITED, UNCLASSIFIED
SECQURITY CLASSIFICATION OF THIS PAGE

l REPORT DOCUMENTATION PAGE

1s. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS
None

[2a. SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-83-TR-08

5. MONITORING ORGANIZATION REPORT NUMBER(S)
ESC-TR-93-185

6b. OFFICE SYMBOL
{if apphcabic)

SEI

6a. NAME OF PERFORMING ORGANIZATION
Software Engineering Institute

Ta. NAME OF MONITORING ORGANIZATION
SEl Joint Program Office

6c. ADDRESS (caty, state, and zp code)

Carnegie Mellon University
Pittsburgh PA 15213

Tb. ADDRESS (culy, state, and z1p code)

HQ ESC/ENS

5 Eglin Street

Hanscom AFB, MA 01731-2116

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SE! Joint Program Office

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F1962890C0003

8¢c. ADDRESS (city, state, and zip code))

Camegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO NO.
63756E N/A N/A N/A

11. TTTLE (Include Secunty Classificstion)
A Case Study in Software Maintenance

12. PERSONAL AUTHOR(S)

Finat FROM TO

15. PAGE COUNT

50 pp.

14. DATE OF REPORT (vear. month, day)
July 1993

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

CASE tools environments
computer-aided software software maintenance
engineering environments

19. ABSTRACT (continue on reverse if necessary and identfy by block number)

Abstract: In an effort to find out more about the tools, procedures, and techniques project personnel
use in their work, the Computer-Aided Software Engineering(CASE) Environments Project inter-
viewed personnel in eight software maintenance projects within an agency ot the U.S/ government.
These interviews highlighted problems that we believe are typical of many software maintenance
organizations (i.e., the need for more effective software maintenance tools, lack of communication
between individuals working on similar projects, low status of maintenance personnel, and lack of a
design-for-maintenance philosophy during the software development phase). This report highlights

| 13a. TYPE OF REPORT 13b. TIME COVERED

{please tum over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED . SAME AS RPI‘D

DTIC USERS .

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL
Thomas R. Miller, Lt Col, USAF

DD FORM 1473, 83 APR

22b. TELEPHONE NUMBER (include area code)
(412) 268-7631

22¢. OFFICE §YMBOL
ESC/ENS (SEI)

EDITION of 1 JAN 7318 OBSOLETE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF TYHS

ABSTRACT — continued from page ane, block 19

the findings of these interviews, provides our analysis of the findings, and makes recommenda-
tions directed at the agency for improvement in the areas of tools, people, and process. We
believe that what we observed is very typical of the state of the practice in these areas and as

such that this report and its recommendations are applicable to other large or small software
maintenance projects.

